Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 25(6): 812-822, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37127714

RESUMO

Haematopoietic stem cells (HSCs) are multipotent, but individual HSCs can show restricted lineage output in vivo. Currently, the molecular mechanisms and physiological role of HSC fate restriction remain unknown. Here we show that lymphoid fate is epigenetically but not transcriptionally primed in HSCs. In multi-lineage HSCs that produce lymphocytes, lymphoid-specific upstream regulatory elements (LymUREs) but not promoters are preferentially accessible compared with platelet-biased HSCs that do not produce lymphoid cell types, providing transcriptionally silent lymphoid lineage priming. Runx3 is preferentially expressed in multi-lineage HSCs, and reinstating Runx3 expression increases LymURE accessibility and lymphoid-primed multipotent progenitor 4 (MPP4) output in old, platelet-biased HSCs. In contrast, platelet-biased HSCs show elevated levels of epigenetic platelet-lineage priming and give rise to MPP2 progenitors with molecular platelet bias. These MPP2 progenitors generate platelets with faster kinetics and through a more direct cellular pathway compared with MPP2s derived from multi-lineage HSCs. Epigenetic programming therefore predicts both fate restriction and differentiation kinetics in HSCs.


Assuntos
Células-Tronco Hematopoéticas , Linfócitos , Linhagem da Célula/genética , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular/genética , Linfócitos/metabolismo , Epigênese Genética , Células-Tronco Multipotentes/metabolismo
2.
Front Immunol ; 13: 1056838, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578500

RESUMO

Human basophils, first identified over 140 years ago, account for just 0.5-1% of circulating leukocytes. While this scarcity long hampered basophil studies, innovations during the past 30 years, beginning with their isolation and more recently in the development of mouse models, have markedly advanced our understanding of these cells. Although dissimilarities between human and mouse basophils persist, the overall findings highlight the growing importance of these cells in health and disease. Indeed, studies continue to support basophils as key participants in IgE-mediated reactions, where they infiltrate inflammatory lesions, release pro-inflammatory mediators (histamine, leukotriene C4: LTC4) and regulatory cytokines (IL-4, IL-13) central to the pathogenesis of allergic diseases. Studies now report basophils infiltrating various human cancers where they play diverse roles, either promoting or hampering tumorigenesis. Likewise, this activity bears remarkable similarity to the mounting evidence that basophils facilitate wound healing. In fact, both activities appear linked to the capacity of basophils to secrete IL-4/IL-13, with these cytokines polarizing macrophages toward the M2 phenotype. Basophils also secrete several angiogenic factors (vascular endothelial growth factor: VEGF-A, amphiregulin) consistent with these activities. In this review, we feature these newfound properties with the goal of unraveling the increasing importance of basophils in these diverse pathobiological processes.


Assuntos
Hipersensibilidade , Neoplasias , Animais , Camundongos , Humanos , Basófilos , Interleucina-13 , Interleucina-4 , Interleucina-3 , Liberação de Histamina , Citocinas
3.
Front Immunol ; 13: 894163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693823

RESUMO

Epithelial-derived alarmins (IL-33, TSLP, and IL-25) play an upstream role in the pathogenesis of asthma. Basophil-derived cytokines are a pivotal component of allergic inflammation. We evaluated the in vitro effects of IL-33, TSLP, and IL-25, alone and in combination with IL-3 on purified peripheral blood human basophils (hBaso) and bone marrow-derived mouse basophils (mBaso) in modulating the production of IL-4, IL-13, CXCL8 or the mouse CXCL8 equivalents CXCL1 and CXCL2. IL-3 and IL-33, but not TSLP and IL-25, concentration-dependently induced IL-4, IL-13, and CXCL8 release from hBaso. IL-3 synergistically potentiated the release of cytokines induced by IL-33 from hBaso. In mBaso, IL-3 and IL-33 rapidly induced IL-4 and IL-13 mRNA expression and protein release. IL-33, but not IL-3, induced CXCL2 and CXCL1 from mBaso. Differently from hBaso, TSLP induced IL-4, IL-13, CXCL1 and CXCL2 mRNA expression and protein release from mBaso. IL-25 had no effect on IL-4, IL-13, and CXCL1/CXCL2 mRNA expression and protein release even in the presence of IL-3. No synergism was observed between IL-3 and either IL-25 or TSLP. IL-3 inhibited both TSLP- and IL-33-induced CXCL1 and CXCL2 release from mBaso. Our results highlight some similarities and marked differences between the effects of IL-3 and alarmins on the release of cytokines from human and mouse basophils.


Assuntos
Basófilos , Interleucina-33 , Alarminas/metabolismo , Animais , Basófilos/metabolismo , Citocinas/metabolismo , Humanos , Interleucina-13/metabolismo , Interleucina-3/metabolismo , Interleucina-3/farmacologia , Interleucina-33/metabolismo , Interleucina-4/metabolismo , Camundongos , RNA Mensageiro/metabolismo
4.
Cells ; 10(12)2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34943819

RESUMO

The mechanisms of melanoma progression have been extensively studied in the last decade, and despite the diagnostic and therapeutic advancements pursued, malignant melanoma still accounts for 60% of skin cancer deaths. Therefore, research efforts are required to better define the intercellular molecular steps underlying the melanoma development. In an attempt to represent the complexity of the tumour microenvironment (TME), here we analysed the studies on melanoma in acidic and hypoxic microenvironments and the interactions with stromal and immune cells. Within TME, acidity and hypoxia force melanoma cells to adapt and to evolve into a malignant phenotype, through the cooperation of the tumour-surrounding stromal cells and the escape from the immune surveillance. The role of tumour exosomes in the intercellular crosstalk has been generally addressed, but less studied in acidic and hypoxic conditions. Thus, this review aims to summarize the role of acidic and hypoxic microenvironment in melanoma biology, as well as the role played by melanoma-derived exosomes (Mexo) under these conditions. We also present a perspective on the characteristics of acidic and hypoxic exosomes to disclose molecules, to be further considered as promising biomarkers for an early detection of the disease. An update on the use of exosomes in melanoma diagnosis, prognosis and response to treatment will be also provided and discussed.


Assuntos
Ácidos/metabolismo , Progressão da Doença , Exossomos/metabolismo , Melanoma/patologia , Microambiente Tumoral , Hipóxia Celular/genética , Redes Reguladoras de Genes , Humanos , Melanoma/genética , Melanoma/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
5.
Front Immunol ; 11: 571593, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329534

RESUMO

Interleukin-33 (IL-33) is an epithelial-derived cytokine that can be released upon tissue damage, stress, or infection, acting as an alarmin for the immune system. IL-33 has long been studied in the context of Th2-related immunopathologies, such as allergic diseases and parasitic infections. However, its capacity to stimulate also Th1-type of immune responses is now well established. IL-33 binds to its specific receptor ST2 expressed by most immune cell populations, modulating a variety of responses. In cancer immunity, IL-33 can display both pro-tumoral and anti-tumoral functions, depending on the specific microenvironment. Recent findings indicate that IL-33 can effectively stimulate immune effector cells (NK and CD8+ T cells), eosinophils, basophils and type 2 innate lymphoid cells (ILC2) promoting direct and indirect anti-tumoral activities. In this review, we summarize the most recent advances on anti-tumor immune mechanisms operated by IL-33, including the modulation of immune checkpoint molecules, with the aim to understand its potential as a therapeutic target in cancer.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Eosinófilos/imunologia , Imunoterapia/métodos , Interleucina-33/metabolismo , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Animais , Carcinogênese , Humanos , Imunidade Inata , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Neoplasias/terapia , Transdução de Sinais , Microambiente Tumoral
6.
Front Immunol ; 11: 2103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013885

RESUMO

Basophils were identified in human peripheral blood by Paul Ehrlich over 140 years ago. Human basophils represent <1% of peripheral blood leukocytes. During the last decades, basophils have been described also in mice, guinea pigs, rabbits, and monkeys. There are many similarities, but also several immunological differences between human and mouse basophils. There are currently several strains of mice with profound constitutive or inducible basophil deficiency useful to prove that these cells have specific roles in vivo. However, none of these mice are solely and completely devoid of all basophils. Therefore, the relevance of these findings to humans remains to be established. It has been known for some time that basophils have the propensity to migrate into the site of inflammation. Recent observations indicate that tissue resident basophils contribute to lung development and locally promote M2 polarization of macrophages. Moreover, there is increasing evidence that lung-resident basophils exhibit a specific phenotype, different from circulating basophils. Activated human and mouse basophils synthesize restricted and distinct profiles of cytokines. Human basophils produce several canonical (e.g., VEGFs, angiopoietin 1) and non-canonical (i.e., cysteinyl leukotriene C4) angiogenic factors. Activated human and mouse basophils release extracellular DNA traps that may have multiple effects in cancer. Hyperresponsiveness of basophils has been demonstrated in patients with JAK2V617F-positive polycythemia vera. Basophils are present in the immune landscape of human lung adenocarcinoma and pancreatic cancer and can promote inflammation-driven skin tumor growth. The few studies conducted thus far using different models of basophil-deficient mice have provided informative results on the roles of these cells in tumorigenesis. Much more remains to be discovered before we unravel the hitherto mysterious roles of basophils in human and experimental cancers.


Assuntos
Indutores da Angiogênese/imunologia , Basófilos/imunologia , Carcinogênese/imunologia , Macrófagos/imunologia , Neoplasias/imunologia , Animais , Basófilos/patologia , Carcinogênese/patologia , Humanos , Macrófagos/patologia , Neoplasias/patologia
7.
Adv Exp Med Biol ; 1273: 1-28, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33119873

RESUMO

Eosinophils are rare blood-circulating and tissue-infiltrating immune cells studied for decades in the context of allergic diseases and parasitic infections. Eosinophils can secrete a wide array of soluble mediators and effector molecules, with potential immunoregulatory activities in the tumor microenvironment (TME). These findings imply that these cells may play a role in cancer immunity. Despite these cells were known to infiltrate tumors since many years ago, their role in TME is gaining attention only recently. In this chapter, we will review the main biological functions of eosinophils that can be relevant within the TME. We will discuss how these cells may undergo phenotypic changes acquiring pro- or antitumoricidal properties according to the surrounding stimuli. Moreover, we will analyze canonical (i.e., degranulation) and unconventional mechanisms (i.e., DNA traps, exosome secretion) employed by eosinophils in inflammatory contexts, which can be relevant for tumor immune responses. Finally, we will review the available preclinical models that could be employed for the study of the role in vivo of eosinophils in cancer.


Assuntos
Eosinófilos/citologia , Neoplasias/imunologia , Microambiente Tumoral/imunologia , Eosinófilos/imunologia , Humanos , Inflamação/imunologia
8.
Adv Exp Med Biol ; 1224: 21-34, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32036602

RESUMO

Basophils represent approximately 1% of human peripheral blood leukocytes. Their effector functions were initially appreciated in the 1970s when basophils were shown to express the high-affinity receptor (FcεRI) for IgE and to release proinflammatory mediators (histamine and cysteinyl leukotriene C4) and immunoregulatory cytokines (i.e., IL-4 and IL-13). Basophils in the mouse were subsequently identified and immunologically characterized. There are many similarities but also several differences between human and mouse basophils. Basophil-deficient mice have enabled to examine the in vivo roles of basophils in several immune disorders and, more recently, in tumor immunity. Activated human basophils release several proangiogenic molecules such as vascular endothelial growth factor-A (VEGF-A), vascular endothelial growth factor-B (VEGF-B), CXCL8, angiopoietin 1 (ANGPT1), and hepatocyte growth factor (HGF). On the other side, basophils can exert anti-tumorigenic effects by releasing granzyme B, TNF-α, and histamine. Circulating basophils have been associated with certain human hematologic (i.e., chronic myeloid leukemia) and solid tumors. Basophils have been found in tumor microenvironment (TME) of human lung adenocarcinoma and pancreatic cancer. Basophils played a role in melanoma rejection in basophil-deficient mouse model. By contrast, basophils appear to play a pro-tumorigenic role in experimental and human pancreatic cancer. In conclusion, the roles of basophils in experimental and human cancers have been little investigated and remain largely unknown. The elucidation of the roles of basophils in tumor immunity will demand studies on increasing complexity beyond those assessing basophil density and their microlocalization in TME. There are several fundamental questions to be addressed in experimental models and clinical studies before we understand whether basophils are an ally, adversary, or even innocent bystanders in cancers.


Assuntos
Basófilos/imunologia , Basófilos/metabolismo , Neoplasias/imunologia , Microambiente Tumoral , Animais , Humanos
9.
Cancers (Basel) ; 11(11)2019 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-31717819

RESUMO

Eosinophils are major effectors of Th2-related pathologies, frequently found infiltrating several human cancers. We recently showed that eosinophils play an essential role in anti-tumor responses mediated by immunotherapy with the 'alarmin' intereukin-33 (IL-33) in melanoma mouse models. Here, we analyzed the mechanisms by which IL-33 mediates tumor infiltration and antitumor activities of eosinophils. We show that IL-33 recruits eosinophils indirectly, via stimulation of tumor cell-derived chemokines, while it activates eosinophils directly, up-regulating CD69, the adhesion molecules ICAM-1 and CD11b/CD18, and the degranulation marker CD63. In co-culture experiments with four different tumor cell lines, IL-33-activated eosinophils established large numbers of stable cell conjugates with target tumor cells, with the polarization of eosinophil effector proteins (ECP, EPX, and granzyme-B) and CD11b/CD18 to immune synapses, resulting in efficient contact-dependent degranulation and tumor cell killing. In tumor-bearing mice, IL-33 induced substantial accumulation of degranulating eosinophils within tumor necrotic areas, indicating cytotoxic activity in vivo. Blocking of CD11b/CD18 signaling significantly reduced IL-33-activated eosinophils' binding and subsequent killing of tumor cells, indicating a crucial role for this integrin in triggering degranulation. Our findings provide novel mechanistic insights for eosinophil-mediated anti-tumoral function driven by IL-33. Treatments enabling tumor infiltration and proper activation of eosinophils may improve therapeutic response in cancer patients.

10.
Nature ; 554(7690): 106-111, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29298288

RESUMO

Rare multipotent haematopoietic stem cells (HSCs) in adult bone marrow with extensive self-renewal potential can efficiently replenish all myeloid and lymphoid blood cells, securing long-term multilineage reconstitution after physiological and clinical challenges such as chemotherapy and haematopoietic transplantations. HSC transplantation remains the only curative treatment for many haematological malignancies, but inefficient blood-lineage replenishment remains a major cause of morbidity and mortality. Single-cell transplantation has uncovered considerable heterogeneity among reconstituting HSCs, a finding that is supported by studies of unperturbed haematopoiesis and may reflect different propensities for lineage-fate decisions by distinct myeloid-, lymphoid- and platelet-biased HSCs. Other studies suggested that such lineage bias might reflect generation of unipotent or oligopotent self-renewing progenitors within the phenotypic HSC compartment, and implicated uncoupling of the defining HSC properties of self-renewal and multipotency. Here we use highly sensitive tracking of progenitors and mature cells of the megakaryocyte/platelet, erythroid, myeloid and B and T cell lineages, produced from singly transplanted HSCs, to reveal a highly organized, predictable and stable framework for lineage-restricted fates of long-term self-renewing HSCs. Most notably, a distinct class of HSCs adopts a fate towards effective and stable replenishment of a megakaryocyte/platelet-lineage tree but not of other blood cell lineages, despite sustained multipotency. No HSCs contribute exclusively to any other single blood-cell lineage. Single multipotent HSCs can also fully restrict towards simultaneous replenishment of megakaryocyte, erythroid and myeloid lineages without executing their sustained lymphoid lineage potential. Genetic lineage-tracing analysis also provides evidence for an important role of platelet-biased HSCs in unperturbed adult haematopoiesis. These findings uncover a limited repertoire of distinct HSC subsets, defined by a predictable and hierarchical propensity to adopt a fate towards replenishment of a restricted set of blood lineages, before loss of self-renewal and multipotency.


Assuntos
Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Multipotentes/citologia , Animais , Antígenos CD34 , Linfócitos B/citologia , Plaquetas/citologia , Antígeno CD48/deficiência , Autorrenovação Celular , Células Eritroides/citologia , Feminino , Células-Tronco Hematopoéticas/metabolismo , Masculino , Megacariócitos/citologia , Camundongos , Células-Tronco Multipotentes/metabolismo , Células Mieloides/citologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Linfócitos T/citologia
11.
Nature ; 535(7611): 299-302, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27411635

RESUMO

The mechanisms underlying haematopoietic lineage decisions remain disputed. Lineage-affiliated transcription factors with the capacity for lineage reprogramming, positive auto-regulation and mutual inhibition have been described as being expressed in uncommitted cell populations. This led to the assumption that lineage choice is cell-intrinsically initiated and determined by stochastic switches of randomly fluctuating cross-antagonistic transcription factors. However, this hypothesis was developed on the basis of RNA expression data from snapshot and/or population-averaged analyses. Alternative models of lineage choice therefore cannot be excluded. Here we use novel reporter mouse lines and live imaging for continuous single-cell long-term quantification of the transcription factors GATA1 and PU.1 (also known as SPI1). We analyse individual haematopoietic stem cells throughout differentiation into megakaryocytic-erythroid and granulocytic-monocytic lineages. The observed expression dynamics are incompatible with the assumption that stochastic switching between PU.1 and GATA1 precedes and initiates megakaryocytic-erythroid versus granulocytic-monocytic lineage decision-making. Rather, our findings suggest that these transcription factors are only executing and reinforcing lineage choice once made. These results challenge the current prevailing model of early myeloid lineage choice.


Assuntos
Diferenciação Celular , Linhagem da Célula , Fator de Transcrição GATA1/metabolismo , Células Mieloides/citologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Eritrócitos/citologia , Retroalimentação Fisiológica , Feminino , Genes Reporter , Granulócitos/citologia , Hematopoese , Células-Tronco Hematopoéticas/citologia , Masculino , Megacariócitos/citologia , Camundongos , Modelos Biológicos , Monócitos/citologia , Reprodutibilidade dos Testes , Análise de Célula Única , Processos Estocásticos
12.
Nat Immunol ; 17(6): 666-676, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27043410

RESUMO

According to current models of hematopoiesis, lymphoid-primed multi-potent progenitors (LMPPs) (Lin(-)Sca-1(+)c-Kit(+)CD34(+)Flt3(hi)) and common myeloid progenitors (CMPs) (Lin(-)Sca-1(+)c-Kit(+)CD34(+)CD41(hi)) establish an early branch point for separate lineage-commitment pathways from hematopoietic stem cells, with the notable exception that both pathways are proposed to generate all myeloid innate immune cell types through the same myeloid-restricted pre-granulocyte-macrophage progenitor (pre-GM) (Lin(-)Sca-1(-)c-Kit(+)CD41(-)FcγRII/III(-)CD150(-)CD105(-)). By single-cell transcriptome profiling of pre-GMs, we identified distinct myeloid differentiation pathways: a pathway expressing the gene encoding the transcription factor GATA-1 generated mast cells, eosinophils, megakaryocytes and erythroid cells, and a pathway lacking expression of that gene generated monocytes, neutrophils and lymphocytes. These results identify an early hematopoietic-lineage bifurcation that separates the myeloid lineages before their segregation from other hematopoietic-lineage potential.


Assuntos
Diferenciação Celular , Linhagem da Célula , Linfócitos/fisiologia , Células Mieloides/fisiologia , Células Progenitoras Mieloides/fisiologia , Animais , Antígenos CD/metabolismo , Células Cultivadas , Biologia Computacional , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Hematopoese , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Análise de Sequência de RNA , Análise de Célula Única , Análise Serial de Tecidos , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
13.
Nat Commun ; 7: 11075, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27009448

RESUMO

Aged haematopoietic stem cells (HSCs) generate more myeloid cells and fewer lymphoid cells compared with young HSCs, contributing to decreased adaptive immunity in aged individuals. However, it is not known how intrinsic changes to HSCs and shifts in the balance between biased HSC subsets each contribute to the altered lineage output. Here, by analysing HSC transcriptomes and HSC function at the single-cell level, we identify increased molecular platelet priming and functional platelet bias as the predominant age-dependent change to HSCs, including a significant increase in a previously unrecognized class of HSCs that exclusively produce platelets. Depletion of HSC platelet programming through loss of the FOG-1 transcription factor is accompanied by increased lymphoid output. Therefore, increased platelet bias may contribute to the age-associated decrease in lymphopoiesis.


Assuntos
Plaquetas/metabolismo , Senescência Celular , Células-Tronco Hematopoéticas/citologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Animais , Linhagem da Célula/genética , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Células Mieloides/citologia , Proteínas Nucleares/metabolismo , Fenótipo , Fatores de Transcrição/metabolismo
14.
Nature ; 502(7470): 232-6, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23934107

RESUMO

The blood system is maintained by a small pool of haematopoietic stem cells (HSCs), which are required and sufficient for replenishing all human blood cell lineages at millions of cells per second throughout life. Megakaryocytes in the bone marrow are responsible for the continuous production of platelets in the blood, crucial for preventing bleeding--a common and life-threatening side effect of many cancer therapies--and major efforts are focused at identifying the most suitable cellular and molecular targets to enhance platelet production after bone marrow transplantation or chemotherapy. Although it has become clear that distinct HSC subsets exist that are stably biased towards the generation of lymphoid or myeloid blood cells, we are yet to learn whether other types of lineage-biased HSC exist or understand their inter-relationships and how differently lineage-biased HSCs are generated and maintained. The functional relevance of notable phenotypic and molecular similarities between megakaryocytes and bone marrow cells with an HSC cell-surface phenotype remains unclear. Here we identify and prospectively isolate a molecularly and functionally distinct mouse HSC subset primed for platelet-specific gene expression, with enhanced propensity for short- and long-term reconstitution of platelets. Maintenance of platelet-biased HSCs crucially depends on thrombopoietin, the primary extrinsic regulator of platelet development. Platelet-primed HSCs also frequently have a long-term myeloid lineage bias, can self-renew and give rise to lymphoid-biased HSCs. These findings show that HSC subtypes can be organized into a cellular hierarchy, with platelet-primed HSCs at the apex. They also demonstrate that molecular and functional priming for platelet development initiates already in a distinct HSC population. The identification of a platelet-primed HSC population should enable the rational design of therapies enhancing platelet output.


Assuntos
Plaquetas/citologia , Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Animais , Linhagem da Célula/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Linfócitos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
Proc Natl Acad Sci U S A ; 110(16): 6542-7, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23576749

RESUMO

Tissue progenitor cells are an attractive target for regenerative therapy. In various organs, bone marrow cell (BMC) therapy has shown promising preliminary results, but to date no definite mechanism has been demonstrated to account for the observed benefit in organ regeneration. Tissue injury and regeneration is invariably accompanied by macrophage infiltration, but their influence upon the progenitor cells is incompletely understood, and direct signaling pathways may be obscured by the multiple roles of macrophages during organ injury. We therefore examined a model without injury; a single i.v. injection of unfractionated BMCs in healthy mice. This induced ductular reactions (DRs) in healthy mice. We demonstrate that macrophages within the unfractionated BMCs are responsible for the production of DRs, engrafting in the recipient liver and localizing to the DRs. Engrafted macrophages produce the cytokine TWEAK (TNF-like weak inducer of apoptosis) in situ. We go on to show that recombinant TWEAK activates DRs and that BMC mediated DRs are TWEAK dependent. DRs are accompanied by liver growth, occur in the absence of liver tissue injury and hepatic progenitor cells can be isolated from the livers of mice with DRs. Overall these results reveal a hitherto undescribed mechanism linking macrophage infiltration to DRs in the liver and highlight a rationale for macrophage derived cell therapy in regenerative medicine.


Assuntos
Ductos Biliares Intra-Hepáticos/citologia , Ductos Biliares Intra-Hepáticos/crescimento & desenvolvimento , Transplante de Medula Óssea/métodos , Macrófagos/metabolismo , Medicina Regenerativa/métodos , Transdução de Sinais/fisiologia , Fatores de Necrose Tumoral/metabolismo , Animais , Ensaio de Unidades Formadoras de Colônias , Citocina TWEAK , Citometria de Fluxo , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Reação em Cadeia da Polimerase em Tempo Real
16.
Haematologica ; 97(9): 1291-4, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22371176

RESUMO

Pontin is a highly conserved DNA helicase/ATPase which is a component of several macromolecular complexes with functions that include DNA repair, telomere maintenance and tumor suppression. While Pontin is known to be essential in yeast, fruit flies and frogs, its physiological role in mammalian organisms remains to be determined. We here find that Pontin is highly expressed in embryonic stem cells and hematopoietic tissues. Through germline inactivation of Ruvbl1, the gene encoding Pontin, we found it to be essential for early embryogenesis, as Ruvbl1 null embryos could not be recovered beyond the blastocyst stage where proliferation of the pluripotent inner cell mass was impaired. Conditional ablation of Ruvbl1 in hematopoietic tissues led to bone marrow failure. Competitive repopulation experiments showed that this included the loss of hematopoietic stem cells through apopotosis. Pontin is, therefore, essential for the function of both embryonic pluripotent cells and adult hematopoietic stem cells.


Assuntos
Medula Óssea/patologia , Diferenciação Celular , Sobrevivência Celular/genética , DNA Helicases/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Hematopoéticas/citologia , ATPases Associadas a Diversas Atividades Celulares , Animais , Apoptose , Western Blotting , Células Cultivadas , Citometria de Fluxo , Integrases/metabolismo , Camundongos , Camundongos Knockout , Fenótipo
17.
Proc Natl Acad Sci U S A ; 106(41): 17475-80, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19805133

RESUMO

Macrophages play an essential role in the resolution of tissue damage through removal of necrotic cells, thus paving the way for tissue regeneration. Macrophages also directly support the formation of new tissue to replace the injury, through their acquisition of an anti-inflammatory, or M2, phenotype, characterized by a gene expression program that includes IL-10, the IL-13 receptor, and arginase 1. We report that deletion of two CREB-binding sites from the Cebpb promoter abrogates Cebpb induction upon macrophage activation. This blocks the downstream induction of M2-specific Msr1, Il10, II13ra, and Arg-1 genes, whereas the inflammatory (M1) genes Il1, Il6, Tnfa, and Il12 are not affected. Mice carrying the mutated Cebpb promoter (betaDeltaCre) remove necrotic tissue from injured muscle, but exhibit severe defects in muscle fiber regeneration. Conditional deletion of the Cebpb gene in muscle cells does not affect regeneration, showing that the C/EBPbeta cascade leading to muscle repair is muscle-extrinsic. While betaDeltaCre macrophages efficiently infiltrate injured muscle they fail to upregulate Cebpb, leading to decreased Arg-1 expression. CREB-mediated induction of Cebpb expression is therefore required in infiltrating macrophages for upregulation of M2-specific genes and muscle regeneration, providing a direct genetic link between these two processes.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Regulação da Expressão Gênica , Macrófagos/fisiologia , Músculo Esquelético/fisiologia , Animais , Linfócitos B/fisiologia , Sítios de Ligação , Células da Medula Óssea/fisiologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Camundongos , Regiões Promotoras Genéticas , Regeneração , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...